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contour plot for ELWD-Z3 shows that there is less variability in the data in transverse direction 

than in the longitudinal direction (Figure 17). Based on these observations, further analysis 

with directional variability should be performed on this dataset to identify correlation length 

in different directions.  

 Omnidirectional γ(h) of γd showed increasing γ(h) with separation distance and close to the 

sample variance (Figure 18), and the nugget values of γ̂(h) are relatively larger compared to 

its sill value. The measurement error or insufficient sampling at smaller spacing might be the 

cause for the relatively high nugget value. The contour plot (Figure 19) shows that the upper 

left portion of the studied area had comparatively low values and the bottom left portion had 

comparatively high areas. 

 Omnidirectional γ(h) of moisture content shows a very large nugget effect compared to the 

sample variance and a trend can be observed in the fitted semivariogram with range 

estimated as about 50 m (Figure 20). The experimental omnidirectional γ(h) calculated in this 

study area is close to a straight line and there appears to be a trend in the data with moisture 

content decreasing from the top left corner to the bottom right corner (Figure 21). 

 The omnidirectional γ(h) of DCPIsubbase and DCPIsubgrade are shown in Figure 22 and Figure 

24, respectively. A longer range value was observed in DCPIsubbase than DCPIsubgrade which 

indicates that there is a higher spatial correlation in DCPIsubbase values than DCPIsubgrade 

values. The experimental semivariogram calculated for DCPIsubbase shows a nearly zero 

nugget effect, only a few γ(h) values within the first 1 m separation distance show a possible 

correlation of DCPIsubgrade with spacing distance. The zero nugget effect and short range 

value modeled in DCPIsubgrade predicted values at unsampled location around the sampled 

location with variation equal to the sill value which shows up as concentrated small circular 

areas with similar values in the kriged contour plot of DCPIsubgrade (Figure 25). The 

DCPIsubbase contour plot shows less concentrated circular areas than DCPIsubgrade, which is 

indicative of the longer range values.  

 

Figure 16. MI I94 TS1b: Omnidirectional γ(h) of ELWD-Z3 with fitted γ̂(h)  
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Figure 17. MI I94 TS1b: Ordinary kriging of ELWD-Z3 with fitted omnidirectional 

exponential γ̂(h)  

 

Figure 18. MI I94 TS1b: Omnidirectional γ(h) of γd with fitted γ̂(h)  
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Figure 19. MI I94 TS1b: Ordinary kriging of γd with fitted omnidirectional spherical γ̂(h) 

 

Figure 20. MI I94 TS1b: Omnidirectional γ(h) of w with fitted γ̂(h)  
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Figure 21. MI I94 TS1b: Ordinary kriging of w with fitted omnidirectional exponential 

γ̂(h) 

 

Figure 22. MI I94 TS1b: Omnidirectional γ(h) of DCPIsubbase with fitted γ̂(h)  
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